

TEACHERS COLLEGE, COLUMBIA UNIVERSITY

Toward a Practical Set of STEM Transfer Program Momentum Metrics

John Fink, **Taylor Myers**, Daniel Sparks, & Shanna Jaggars Community College Research Center, Teachers College – Columbia University

This material is based upon work supported by the National Science Foundation under Grant No. 1915191

Program Momentum Matters

- Programs speak to a student's "why" for enrolling
- Program momentum predicts program completion
- Program data is close to practice and actionable
- Efficient and successful transfer requires alignment to baccalaureate fields and programs

CCRC

Metrics for Improvement: Momentum as a

Leading Indicator

You Are Here

Early Academic Momentum

Credit Momentum Completed 24+ college credits in year 1

Gateway Course Momentum

Completed college math/English in year 1 Persistence and Course Completion

> Fall-Spring Persistence Course completion rate in year 1

Longer-Term Outcomes

Concentration into program areas

Early Program Momentum

CCRC

Working Paper & Research Brief: Toward a Practical Set of STEM Transfer Program Momentum Metrics

- 1. Can a simple set of STEM momentum metrics predict students' long-term outcomes at a similar or superior level to widely-used general early momentum metrics?
- 2. Are these STEM momentum metrics reliable across a wide variety of institutional contexts and student groups, particularly those who are historically underrepresented in STEM?
- 3. To what extent do these metrics reflect students' intent to study STEM, student success within STEM, and institution-specific efforts to support STEM pathways?

Key Findings

- **Building STEM momentum benefits students**; Correlation with longer-term STEM outcomes are reliable across states and student subgroups.
- Findings provide validation of faculty-recommended courses on state transfer pathways; STEM indicators appear to capture momentum beyond signaling STEM intent
- Few students gain STEM Momentum; Gender & racial/ethnic gaps present in access to/completion of STEM Momentum courses in year 1 across and within colleges

Data

- Three medium/large-size community college systems in the United States
- 70 college campuses
- 4 FTIC cohorts (2010, 2011, 2012, 2013)
- ~ 270,000 students
- Deidentified, unit record enrollment, course, and outcome files

Building STEM program momentum increases students' likelihood of STEM bachelor's degree completion

- Conditional on articulated state transfer pathways being in place, completing calculus or non-math transfer-level science courses is associated with a 7 to 9 pp increase in STEM bachelor's completion, on average.
- Significant across-college and across-state variation on these metrics
- Relatively few students complete STEM program momentum

STEM vs. General Academic Momentum Metrics

STE Pathway & Calculus most correlated with STEM bachelor's completion across states

Transfer Pathway Courses Can Capture Program Momentum

CCRO

If building STEM program momentum increases students' likelihood of STEM bachelor's degree completion, how might this attenuate?

- How much variability is there in STEM Momentum gained and for whom – even within the same course subjects (e.g., Calculus, STE-Transfer)?
- Does this change our understanding of the role of building program momentum more generally?

Benefits of Early STEM Momentum Reliable across Student Groups

STEM Bachelor's Completion Rates in 6 years (State C)

(Baseline) All transfer-intending CC entrants
Students who completed calculus in year 1
Students who completed STE pathway in year 1

CCRC

Few Students Gain STEM Momentum, Equity Gaps Present Early

Discussion

44

[1,2]

Questions This Study Provokes

- 1. How can states support colleges in tracking and improving early STEM momentum overall and closing early equity gaps?
- 2. Which colleges are more effective in helping students gain early STEM momentum, and what can be replicated at other colleges working to improve STEM transfer outcomes?
- 3. What does this implicate for program momentum more generally would this study be applicable to considering different transfer programs in humanities or social sciences?

